Skip to eBook contentSkip to Chapter linksSkip to Content links for this ChapterSkip to eBook links

Chapter5: Net Present Value and Other Investment Rules

5.2 The Payback Period Method

Defining the Rule

One of the most popular alternatives to NPV is payback. Here is how payback works: Consider a project with an initial investment of −$50,000. Cash flows are $30,000, $20,000, and $10,000 in the first three years, respectively. These flows are illustrated in Figure 5.1. A useful way of writing down investments like the preceding is with the notation:

<a onClick="'/olcweb/cgi/pluginpop.cgi?it=gif::::/sites/dl/premium/0077333403/student/ros82337_eq0505.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (K)</a>

Figure 5.1Cash Flows of an Investment Project

<a onClick="'/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/premium/0077333403/student/ros82337_0501.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (K)</a>

The minus sign in front of the $50,000 reminds us that this is a cash outflow for the investor, and the commas between the different numbers indicate that they are received—or if they are cash outflows, that they are paid out—at different times. In this example we are assuming that the cash flows occur one year apart, with the first one occurring the moment we decide to take on the investment.

p. 139

The firm receives cash flows of $30,000 and $20,000 in the first two years, which add up to the $50,000 original investment. This means that the firm has recovered its investment within two years. In this case two years is the payback period of the investment.

The payback period rule for making investment decisions is simple. A particular cutoff date, say two years, is selected. All investment projects that have payback periods of two years or less are accepted, and all of those that pay off in more than two years—if at all—are rejected.

Problems with the Payback Method

There are at least three problems with payback. To illustrate the first two problems, we consider the three projects in Table 5.1. All three projects have the same three-year payback period, so they should all be equally attractive—right?

Table 5.1Expected Cash Flows for Projects A through C ($)

<a onClick="'/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/premium/0077333403/student/pg139_1.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (K)</a>

Actually, they are not equally attractive, as can be seen by a comparison of different pairs of projects.

Problem 1: Timing of Cash Flows within the Payback Period Let us compare project A with project B. In years 1 through 3, the cash flows of project A rise from $20 to $50, while the cash flows of project B fall from $50 to $20. Because the large cash flow of $50 comes earlier with project B, its net present value must be higher. Nevertheless, we just saw that the payback periods of the two projects are identical. Thus, a problem with the payback method is that it does not consider the timing of the cash flows within the payback period. This example shows that the payback method is inferior to NPV because, as we pointed out earlier, the NPV method discounts the cash flows properly.

Problem 2: Payments after the Payback Period Now consider projects B and C, which have identical cash flows within the payback period. However, project C is clearly preferred because it has a cash flow of $60,000 in the fourth year. Thus, another problem with the payback method is that it ignores all cash flows occurring after the payback period. Because of the short-term orientation of the payback method, some valuable long-term projects are likely to be rejected. The NPV method does not have this flaw because, as we pointed out earlier, this method uses all the cash flows of the project.

p. 140

Problem 3: Arbitrary Standard for Payback Period We do not need to refer to Table 5.1 when considering a third problem with the payback method. Capital markets help us estimate the discount rate used in the NPV method. The riskless rate, perhaps proxied by the yield on a Treasury instrument, would be the appropriate rate for a riskless investment. Later chapters of this textbook show how to use historical returns in the capital markets to estimate the discount rate for a risky project. However, there is no comparable guide for choosing the payback cutoff date, so the choice is somewhat arbitrary.

Managerial Perspective

The payback method is often used by large, sophisticated companies when making relatively small decisions. The decision to build a small warehouse, for example, or to pay for a tune-up for a truck is the sort of decision that is often made by lower-level management. Typically, a manager might reason that a tune-up would cost, say, $200, and if it saved $120 each year in reduced fuel costs, it would pay for itself in less than two years. On such a basis the decision would be made.

Although the treasurer of the company might not have made the decision in the same way, the company endorses such decision making. Why would upper management condone or even encourage such retrograde activity in its employees? One answer would be that it is easy to make decisions using payback. Multiply the tune-up decision into 50 such decisions a month, and the appeal of this simple method becomes clearer.

The payback method also has some desirable features for managerial control. Just as important as the investment decision itself is the company's ability to evaluate the manager's decision-making ability. Under the NPV method, a long time may pass before one decides whether a decision was correct. With the payback method we know in two years whether the manager's assessment of the cash flows was correct.

It has also been suggested that firms with good investment opportunities but no available cash may justifiably use payback. For example, the payback method could be used by small, privately held firms with good growth prospects but limited access to the capital markets. Quick cash recovery increases the reinvestment possibilities for such firms.

Finally, practitioners often argue that standard academic criticisms of the payback method overstate any real-world problems with the method. For example, textbooks typically make fun of payback by positing a project with low cash inflows in the early years but a huge cash inflow right after the payback cutoff date. This project is likely to be rejected under the payback method, though its acceptance would, in truth, benefit the firm. Project C in our Table 5.1 is an example of such a project. Practitioners point out that the pattern of cash flows in these textbook examples is much too stylized to mirror the real world. In fact, a number of executives have told us that for the overwhelming majority of real-world projects, both payback and NPV lead to the same decision. In addition, these executives indicate that if an investment like project C were encountered in the real world, decision makers would almost certainly make ad hoc adjustments to the payback rule so that the project would be accepted.

Notwithstanding all of the preceding rationale, it is not surprising to discover that as the decisions grow in importance, which is to say when firms look at bigger projects, NPV becomes the order of the day. When questions of controlling and evaluating the manager become less important than making the right investment decision, payback is used less frequently. For big-ticket decisions, such as whether or not to buy a machine, build a factory, or acquire a company, the payback method is seldom used.

Summary of Payback

p. 141

The payback method differs from NPV and is therefore conceptually wrong. With its arbitrary cutoff date and its blindness to cash flows after that date, it can lead to some flagrantly foolish decisions if used too literally. Nevertheless, because of its simplicity, as well as its other mentioned advantages, companies often use it as a screen for making the myriad of minor investment decisions they continually face.

Although this means that you should be wary of trying to change approaches such as the payback method when you encounter them in companies, you should probably be careful not to accept the sloppy financial thinking they represent. After this course, you would do your company a disservice if you used payback instead of NPV when you had a choice.

2010 McGraw-Hill Higher Education
Any use is subject to the Terms of Use and Privacy Notice.
McGraw-Hill Higher Education is one of the many fine businesses of The McGraw-Hill Companies.